جداسازی ترکیب نیتروژنی کینولین از سوخت مدل با استفاده از کامپوزیت Fe3O4/TiO2/UiO-66

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه

2 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران

10.22034/jfnc.2024.432249.1367

چکیده

ترکیبات نیتروژن­دار به‌واسطه اثرات منفی بر روی محیط‌زیست و پایداری کاتالیست باید از سوخت حذف شوند. در این پژوهش دی‌اکسید تیتانیوم و مگنتیت به چارچوب آلی- فلزی UiO-66 الحاق شدند و کامپوزیت Fe3O4/TiO2/UiO-66 به‌منظور استفاده در نیتروژن­زدایی سوخت مدل استفاده شد. چارچوب آلی- فلزی و کامپوزیت سنتز شده به کمک روش­های XRD، FTIR و BET تحلیل شدند. آنالیزهای تعیین مشخصات نشان داد که دی‌اکسید تیتانیوم و مگنتیت به‌خوبی به UiO-66 الحاق شده­اند. نتایج جذب سطحی نشان داد که کامپوزیت Fe3O4/TiO2/UiO-66، ppm 200 کینولین را در شش ساعت، با مقدار جاذب 005/0 گرم بر 5 میلی‌لیتر سوخت نرمال - هپتان حاوی کینولین در دمای 25 درجه سانتی­گراد به میزان 201 میلی‌گرم بر گرم جاذب حذف می­کند. طبق مقادیر مربع خطاها (R2) میزان انطباق نتایج تجربی با مدل­ هم‌دمای جذب لانگمویر مناسب بود. نتایج نشان داد که مدل شبه مرتبه دوم برای توصیف سینتیک مناسب­تر است. همچنین، سیستم جذب سطحی جدید ارائه شده را می­توان به‌عنوان یک روش جایگزین برای پالایش سوخت در نظر گرفت که دارای عملکرد بسیار کارآمد و سازگار با محیط‌زیست است.    
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Separation of quinoline nitrogen compound from model fuel using Fe3O4/TiO2/UiO-66 composite

نویسندگان [English]

  • Amin Alamdari 1
  • Fatemeh Hajipouralamdari 2
  • Abbas Aghaeinejad-Meybodi 2
1 Urmia University
2 Department of Chemical Engineering, Urmia University, Urmia, Iran
چکیده [English]

Nitrogenous compounds should be removed from fuel due to their negative effects on the environment and catalyst stability. In this research, titanium dioxide and magnetite were added to the UiO-66 metal-organic framework, and the Fe3O4/TiO2/UiO-66 composite was used to denitrogenation of the model fuel. The synthesized metal-organic framework and composite were analyzed by XRD, FTIR and BET methods. Characterization analyzes showed that titanium dioxide and magnetite were well incorporated into UiO-66. The adsorption results showed that the Fe3O4/TiO2/UiO-66 composite removes 200 ppm of quinoline in six hours, with 0.005 g adsorbent in 5 ml of n- heptane fuel containing quinoline at a temperature of 25 ºC at 201 mg.g-1 of adsorbent. According to the values of the squared errors (R2), the degree of conformity of the experimental results with the Langmuir adsorption isotherm model was suitable. The results showed that the pseudo-second order model is more suitable for describing the kinetics. Also, the presented new adsorption system can be considered as an alternative method for fuel refining, which has a very efficient and environmentally friendly performance.
.

کلیدواژه‌ها [English]

  • Metal-organic frameworks
  • UiO-66
  • Denitrogenation
  • Titanium dioxide
  • Magnetite
  1. . V.C. Srivastava, “An evaluation of desulfurization technologies for sulfur removalfrom liquid fuels,” RSC Adv, vol. 2, pp.759–783, 2012.

    1. B. Pawelec, R.M. Navarro, J.M. Campos-Martin, and J.L.G. Fierro, “Towards near zero-sulfur liquid fuels: a perspective review,” Catal. Sci. Technol., vol. 1, pp. 23–42, 2011.
    2. A. Stanislaus, A. Marafi, and M.S. Rana, “Recent advances in the science and tech-nology of ultra low sulfur diesel (ULSD) production,” Catal. Today, vol. 153, pp. 1–68, 2010.
    3. M. Almarri, X. Ma, and C. Song, “Role of surface oxygen-containing functional groupsin liquid-phase adsorption of nitrogen compounds on carbon-based adsor-bents,” Energy Fuels, vol. 23, pp. 3940–3947, 2009.
    4. M. Almarri, X. Ma, and C. Song, “Selective adsorption for removal of nitrogen com-pounds from liquid hydrocarbon streams over carbon- and alumina-basedadsorbents,” Ind. Eng. Chem. Res., vol. 48, pp. 951–960, 2009.
    5. A.J. Hernndez-Maldonado, and R.T. Yang, “Denitrogenation of transportation fuelsby zeolites at ambient temperature and pressure,” Angew. Chem. Int. Ed., vol. 43, pp. 1004–1006, 2004.
    6. S. Eijsbouts, V.H.J. De Beer, and R. Prins, “Hydrodenitrogenation of quino-line over carbon-supported transition metal sulfides,” J. Catal., vol. 127, pp. 619–630, 1991.
    7. N. Li, M. Almarri, X.-l. Ma, Q.-F. Zha, “The role of surface oxygen-containing func-tional groups in liquid-phase adsorptive denitrogenation by activated carbon,” New Carbon Mater., vol. 26, pp. 470–478, 2011.
    8. J. Wen, X. Han, H. Lin, Y. Zheng, and W. Chu, “A critical study on the adsorption ofheterocyclic sulfur and nitrogen compounds by activated carbon: equilibrium,kinetics and thermodynamics,” Chem. Eng. J., vol. 164, pp. 29–36, 2010.
    9. D. Liu, J. Gui, and Z. Sun, “Adsorption structures of heterocyclic nitrogen compounds over Cu(I)Y zeolite: a first principle study on mechanism of the denitrogenation and the effect of nitrogen compounds on adsorptive desulfurization,” J. Mol.Catal. A: Chem., vol. 291, pp. 17–21, 2008.
    10. L.-L. Xie, A. Favre-Reguillon, X.-X. Wang, X. Fu, and M. Lemaire, “Selective adsorptionof neutral nitrogen compounds from fuel using ion-exchange resins,” J. Chem.Eng. Data, vol. 55, pp. 4849–4853, 2010.
    11. A. Koriakin, K.M. Ponvel, and C.-H. Lee, “Denitrogenation of raw diesel fuel bylithium-modified mesoporous silica,” Chem. Eng. J., vol. 162, pp. 649–655, 2010.
    12. J.-M. Kwon, J.-H. Moon, Y.-S. Bae, D.-G. Lee, H.-C. Sohn, and C.-H. Lee, “Adsorptivedesulfurization and denitrogenation of refinery fuels using mesoporous silicaadsorbents,” ChemSusChem, vol. 1, pp. 307–309, 2008.
    13. Y.-S. Bae, M.-B. Kim, H.-J. Lee, J.W. Ryu, and C.-H. Lee, “Adsorptive denitrogenationof light gas oil by silica–zirconia cogel,” AIChE J., vol. 52, pp. 510–521, 2006.
    14. H. Zhang, G. Li, Y. Jia, and H. Liu, “Adsorptive removal of nitrogen-containing com-pounds from fuel,” J. Chem. Eng. Data, vol. 55, pp. 173–177, 2010.
    15. J.H. Kim, X. Ma, A. Zhou, and C. Song, “Ultra-deep desulfurization and denitrogena-tion of diesel fuel by selective adsorption over three different adsorbents: astudy on adsorptive selectivity and mechanism,” Catal. Today, vol. 111, pp. 74–83, 2006.
    16. M. Sun, A.E. Nelson, and J. Adjaye, “First principles study of heavy oil organonitrogenadsorption on NiMoS hydrotreating catalysts,” Catal. Today, vol. 109, pp. 49–53, 2005.
    17. I. Ahmed, and S. H. Jhung, “Effective adsorptive removal of indole from model fuel using ametal-organic framework functionalized with amino groups,” Journal of Hazardous Materials, vol. 283, pp. 544–550, 2015.
    18. P. W. Seo, I. Ahmed, and S. H. Jhung, “Adsorptive removal of nitrogen-containing compounds from a model fuel using a metal–organic framework having a free carboxylic acid group,” Chemical Engineering Journal, vol. 299, pp. 236–243, 2016.
    19. I. Ahmed, N. Abedin Khan, and S. H. Jhun, “Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties,” Chemical Engineering Journal, vol. 321, pp. 40–47, 2017.
    20. I. Ahmed, M. Tong, J. W. Jun, C. Zhong, and S. H. Jhung, “Adsorption of Nitrogen-Containing Compounds from Model Fuel over Sulfonated Metal-Organic Framework: Contribution of Hydrogen-Bonding and Acid-Base Interactions in Adsorption ,” J. Phys. Chem. C, vol. 120, pp. 407–415, 2016.
    21. L. Yang, S. Zhang, X. Shan, C. Ha, Q. An, Z. Xiao, L. Wei, and S. Zhai, “Multifunctional Fe3O4/TiO2/NH2–UiO–66 with integrated interfacial features for favorable phosphate adsorption,” New J. Chem., vol. 46, pp. 14091-14102, 2022.
    22. H. Bagheri, O. Zandi, and A. Aghakhani, “Extraction of fluoxetine from aquatic and urine samples using sodium dodecyl sulfate-coated iron oxide magnetic nanoparticles followed by spectrofluorimetric determination,” Analytica Chimica Acta,vol. 716, pp. 61-65, 2012.
    23. C. Tian, H. Zhang, P. Chen, Y. Song, and J. Zhang, “Magnetically Recyclable Wool/Fe3O4@TiO2/UiO-66 Core-Shell Structured Composite for Photocatalytic Removal of Methylene Blue, Congo Red, Tetracycline Hydrochloride and Cr(VI) Ions,” Fibers and Polymers, vol. 23, pp. 2780-2797, 2022.
    24. M. Sarker, H. J. An, and S. H. Jhung, “Adsorptive Removal of Indole and Quinoline from Model Fuel over Various UiO-66s: Quantitative Contributions of H-Bonding and Acid-Base Interactions to Adsorption ,” J. Phys. Chem. C, vol. 122, 4532–4539, 2018.
    25. R. G. Faria, D. Julião, S. S. Balula, and L. Cunha-Silva, “Hf-Based UiO-66 as Adsorptive Compound and Oxidative Catalyst for Denitrogenation Processes,” Compounds, vol. 1, pp. 3-14, 2021.
    26. S. Subhan, M. Yaseen, B. Ahmad, Z. Tong, F. Subhan, W. Ahmad, and M. Sahibzada, “Fabrication of MnO2 NPs incorporated UiO-66 for the green and efficient oxidative desulfurization and denitrogenation of fuel oils,” Journal of Environmental Chemical Engineering, vol. 9, pp. 105179, 2021.
    27. S. Shin, M. Sarker, H.-I. Lee, and S. H. Jhung, “Metal-organic framework with various functional groups: Remarkable adsorbent for removal of both neutral indole and basic quinoline from liquid fuel,” Chemical Engineering Journal, vol. 370, pp. 1467-1473, 2019.
    28. X. Wang, H. Fan, P. Shen, Y. Yao, Y. Chen, S. Lu, B. Teng, and X. Liao, “Utilizing Ti-MOF crystals’ defects to promote their adsorption and the mechanism investigation”, Microporous and Mesoporous Materials, vol. 327, pp. 111402, 2021.
    29. M. Songolzadeh, M. Soleimani, and M. Takht Ravanchi, “Synthesis and optimization of a new MIL-100 adsorbent for removing basic N-compounds from liquid fuels,” Petroleum Science and Technology, vol. 37, pp. 2383-2390, 2019.
    30. M. Songolzadeh, M. Soleimani, and M. Takht Ravanchi, “Multi‑response optimization of MIL‑101 synthesis for selectively adsorbing N‑compounds from fuels,” Petroleum Science, vol. 16, pp. 1442-1454, 2019.
    31. N. A. Khan, and S. H. Jhung, “Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel,” Chemical Engineering Journal, vol. 375, pp. 121948, 2019.
    32. M. H. Mondol, B. N. Bhadra, J. M. Park, and S. H. Jhung, “A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand,” Chemical Engineering Journal, vol. 404, pp. 126491, 2021.
    33. Z. Zhao, Q.-H. Yang, H.-F. Li, M.-Y. Zong, and D.-H. Wang, “Highly Efficient and Reusable Denitrogenation Adsorbent Obtained by the Fluorination of PMA-MIL-101,” ACS Omega, vol. 8, pp. 31518−31528, 2023.
    34. B. N. Bhadra, J. Y. Song, N. Uddin, N. A. Khan, S. Kim, C. H. Choi, and S. H. Jhung, “Oxidative denitrogenation with TiO2@porous carbon catalyst for purification of fuel: Chemical aspects,” Applied Catalysis B: Environmental, vol. 240, pp. 215-224, 2019.
    35. S. A. A. Razavi, and A. Morsali, “High Capacity Oil Denitrogenation Over Azine and Tetrazine Decorated Metal-Organic Frameworks: Critical Roles of Hydrogen-Bonding,” ACS Appl. Mater. Interfaces,vol. 11, pp. 21711–21719, 2019.
    36. N. A. Khan, S. Shin, and S. H. Jhung, “Cu2O-incorporated MAF-6-derived highly porous carbons for the adsorptive denitrogenation of liquid fuel,”Chemical Engineering Journal, vol. 381, pp. 122675, 2020.
    37. B. N. Bhadra, and S. H. Jhung, “Remarkable metal–organic framework composites for adsorptive removal of nitrogenous compounds from fuel,” Chemical Engineering Journal, vol. 398, pp. 125590, 2020.
    38. Z. Li, Z. Wang, and G. Li, “Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method,” Powder Technology, vol. 287, pp. 256-263, 2016.
    39. M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi,E.A. Quadrelli, F. Bonino, and K.P. Lillerud, “Synthesis and stability of tagged UiO-66Zr-MOFs,” Chem. Mater., vol, 22, pp. 6632–6640, 2010.
    40. M. Bereyhi, R. Zare-dorabi, and S.H. Mosavi, “Microwave‐assisted synthesis of CuCl‐MIL‐47 and application to adsorptive denitrogenation of model fuel: response surface methodology,” ChemistrySelect, vol. 5, pp. 14583-14591, 2020.
    41. M. Ahmadi, M. Mohammadian, M.R. Khosravi-nikou, and A. Baghban, “Experimental, kinetic, and thermodynamic studies of adsorptive desulfurization and denitrogenation of model fuels using novel mesoporous materials,” Journal of hazardous materials. vol. 374, pp. 129-139, 2019.
    42. K.Y. Foo, L.K.Lee, and B.H. Hameed, “Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate,” Chemical engineering Journal, vol. 223, pp. 604-610, 2013.
    43. Y.S. Ho, and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, pp. 451-465, 1999.
    44. A. J. Haider, Z. N. Jameel, and S. Y. Taha, “Synthesis and Characterization of TiO2 Nanoparticles via Sol-Gel Method by Pulse Laser Ablation,” Eng. &Tech. Journal, vol. 33, pp. 761-771, 2015.
    45. R. Kardanpour, S. Tangestaninejad, V. Mirkhani, M. Moghadam, I. Mohammadpoor-Baltork, and F. Zadehahmadi,” Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal-organic framework,” J. Solid State Chem., vol. 226, pp. 262–272, 2015.
    46. M.J. Katz, Z.J. Brown, Y.J. Col´on, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, and O. K. Farha, “A facile synthesis of UiO-66, UiO-67 and their derivatives,” Chem. Commun., vol. 49, pp. 9449–9451, 2013.
    47. P. Hu, Z. Zhao, X. Sun, Y. Muhammad, J. Li, S. Chen, C. Pang, T. Liao, and Z. Zhao, “Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes,” Chem. Eng. J., vol. 356, pp. 329–340, 2019.
    48. X. Cai, J. Pan, G. Tu, Y, Fu, F. Zhang, and W. Zhu, “Pd/UiO-66(Hf): A highly efficient heterogeneous catalyst for the hydrogenation of 2,3,5-trimethylbenzoquinone,” Catal. Commun. , vol. 113, pp. 23–26, 2018.
    49. X. Zhang, P. Huang, A. Liu, and M. Zhu, “A metal—Organic framework for oxidative desulfurization: UIO-66(Zr) as a catalyst,” Fuel, vol. 209, pp. 417–423, 2017.
    50. Y.-X. Li, Z.-Y. Wei, L. Liu, M.-L. Gao, and Z.-B. Han, “Ag nanoparticles supported on UiO- 66 for selective oxidation of styrene,” Inorg. Chem. Commun., vol. 88, pp. 47–50, 2018.
    51. H.-A. Chu, W. Hillier, N.A. Law, and G.T. Babcock, “Vibrational spectroscopy of the oxygen-evolving complex and of manganese model compounds,” Biochim. Biophys. Acta (BBA) Bioenerg, vol. 1503, pp. 69–82, 2001.
    52. Z. Gu, L. Chen, B. Duan, Q. Luo, J. Liu, and C. Duan, “Synthesis of Au@ UiO-66 (NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity,” Chem. Commun., vol. 52, pp. 116–119, 2016.
    53. S.Ahmadipouy, M.H. Haris, F. Ahmadijokani, A. Jarahiyan, H. Molavi, F. M. Moghaddam, M. Rezakazemi, and M. Arjmand, “Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution,” Journal of Molecular Liquids, vol. 322, pp. 114910, 2021.
    54. S. Subhan, A. Ur Rahman, M. Yaseen, H. Ur Rashid, M. Ishaq, M. Sahibzada, and Z. Tong, “Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant,” Fuel, vol. 237, pp. 793–805, 2019.